DISTRIBUTION OF THE TRANSFER PARAMETERS DURING
A REACTION BETWEEN THE MATERIAL OF A BODY SURFACE
AND AN INJECTED SUBSTANCE WITH A BOUNDARY LAYER

G. T. Sergeev UDC 532.517:536.46

Described are the distributions of the Prandtl number, the Schmidt number, the Lewis num-
ber, the temperature, the enthalpy, the concentration, the diffusion currents, and the shear
stresses across the height of a boundary layer with multicomponent diffusion,-

When studying a reactive boundary layer, one considers either the reaction of the injected substance
filtering through the porous wall with the gas in the outer stream, or the breakdown of the surface material
of the body without injection [1].

The subsequent analysis here will take into account both these phenomena, i.e,, the reaction of a
carbon wall with hydrogen injected through it and an oxidizer in the outer laminar stream at infinite rates
of both the heterogeneous and the homogeneous reaction:

2C - 0, = 2CO, (a)
2H2 + OZ = 2H20’ (b)

which occur within an infinitesimally thin zone at the wall surface.

The differential equations of transfer in a reacting transient boundary layer (during laminar flow)
and the constraint equations have been transformed in [1] into the following self-adjoint form:

200’ +puu = 0; (@f) +@'Ci =0, i=1,2, 3
{o|—B'Pr— (1 —Pro)ula+ Jp C/Pr+ ) | 4 0H =0, i=1,23 4 (1)

o(l)=0; o (0) =B%2; C(l)=Ca;

Ci(l)=0, i=23 2rudy=1Ju;

2rudy =Jo; —200(0) = r e+ T

20" (0) Q(Tr) = AT cps, [M (n) — M (1)] — 20 (0) (H' — ZhiC[)Pr(O), i=1,2 3,4, (2)
where i
Gi=—CiiSe,  Jy=d0(0) - o (0) C; (0).

The prim..e fign following a symbol in (1)~(2) and in subsequent expressions denotes a derivative with re-
spect to u (u = u/u,). The other designations are the same as in [1].

The composite system of nonlinear differential equations and constraints (1)-(2) describing the bound-
ary layer at a porous wall with a chemical reaction between H,, C, and oxygen O, of the outer stream as
well as with a displacement of the wetted body surface due to reactions (a) and (b) will simplify appreciably
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when Pr =8¢; =1 and ;Iﬁ =1, The solution for this case is given in [1].

Problem (1)-(2) consisting of five second-order differential equations with 10 constraints, together
with the system of N—1 relations between transforms of diffusion currents j; (jy = —C/S¢j, i =1, 2, 3) and
derivatives C{

a4y @y Qs by big by o}
J:;— Qyy Gy Qogl Jo | = |Om bzz byg || Ca |» 3
Qg Ogy Qg | 3 | by bys by || Cs
obtained from expressions (33) in [1] with
Z7i=..0, Ecizl’ izls 2: 3’ 4’ (4)

where

tyy = CT [(1 — CoimDyy + CofmyDyy], @1y = gy = byy = by = 0,
g = — (1/myDyy + 1/m4D14)’ Qg = ‘il /myDy; + 1/m,Dyy),
g = —(1/mDgy +1/m,Dyy), gy = C5" [Co/my Dy -+ (1 — Cy)/m Dy,
by = —Cr [Cyfmy + (1 —Cym,),
by = byg = (1/my—1/m,), by = by = (1/my — 1/m,),
b,y = —C! [Cl/m1 +-Cyfmy + (1 —Cy — C3)/m4]!
by = C3"' [Cy/my -+ (1 —Cp)m,],

and also together with the equations for determining the thermophysical properties of individual gas com-
ponents (uj, Aj, cpj) as well as of their mixtures (u, A, cp) as functions of temperature T and concentra-
tion C;i) was solved by numerical integration on a Minsk-22 computer with the following step S() of the
independent variable u: S(1) = 0.05for 0 < U = 0.9 and S(U) = 0.03 for 0.9 = u < 0.99. The constraint problem
(1)-(2) was reduced to a Cauchy problem by specifying the boundary conditions only at the wall surface at
u=0.

With quantities Cie (i =1, 2, 3) and T given in (2) as well as with parameters u«. and B, the con-
straints for j(0) @ =1, 2, 3), H(0), w(0), and w'(0) were found from relations (2), whereupon the constraint
problem (1)-(2) was solved with (3) as well as the temperature-dependence and the concentration-depen-
dence of the thermophysical properties taken into account, With parameters thus specified, the Cauchy
problem becomes completely determinate. It is solved by the Runge — Kutta method. At the outer edge of
the boundary layer, at the point U =1, which is a singular point, the finite values of the sought parameters
w(l), ]'_1(1), Cy(1), and C4(1) will be functions of the given approximations to the unknown quantities. For
example,

® [0(0), (0, C4(0), Cy (O] = A0 ()2 -+ AT (DF-HAC, (1)2-[AC, (D),

where A denotes the difference between following and preceding values of respective parameters at point
u=1. When & —~ 0, the unknown quantities w, j;, and C; become determinate. (The minimum of function

$ is determined by the gradient method [3].) The constraints (2) at u = 1 will also be satisfied within the
appropriate accuracy, i.e., the solution to the Cauchy problem with initial values determined in this manner
does, evidently, coincide with the solution to the original constraint problem. The results of numerical
integration have been tabulated for various values of the injection number B, flow velocities u,, and tem-
peratures T, with the variation of thermophysical properties across the boundary layer taken into account
(Figs. 1-4, Tables 1-2). Numerical results have also been obtained for Pr =8¢; =1 and pp = const (the
curves in Figs. 1-3 and the values in Tables 1-2 correspond to U, = 15 m/sec).

According to the curves in Figs. 1-2, the normalized diffusion currents j; as well as the Schmidt
numbers Sc; and the Lewis numbers Le; vary appreciably within the 0.8 < U = 1 zone adjacent to the outer
edge of the boundary layer. Within the @ < 0.8 zone all these quantities vary negligibly little. The largest
variation across the boundary layer is characteristic of the numbers Lej and Sc;. Thus, while Le; = 0.835,

In ([1], p. 66) uzt/? = B*/2 should be corrected to tanyusl/? = B*/2.
{ This is relation (34) in [1].
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Fig. 1. Variation of numbers Pr, Sc;, Lej, and of Cj, jj across the height i of a boundary layer,
at various surface temperatures Ty of the porous wall and at various values of the injection num-
ber B: a, b) Tg =1300°K, P =0.2, B =75; ¢, d) Tg =2000°K, P = 0.2, B = 30; e, f) Tg = 2000°K,
P =0.2, B =178.7; in f) the solid lines correspond to Pr = 8c; = 1 and the dashed lines correspond
to Pr =8¢; =1,

Fig. 2. Numbers Pr, Sc¢;, Lej, and C, JTias functions of a, at various porosities P: a, b) Tg
= 2500°K, P =0.4, B =25; c, d) Tg =2500°K, P =0.2, B =25; in b) the solid lines correspond to
Pr #8c¢; # 1 and the dashed lines correspond to Pr =Sc¢; = 1.

Le, = 0.826, Ley =1.136, and Le, = 1.058 at U = 0 (Fig. 1a), for example, Le; =1.175, Le, = 1.139, Le;
=2.261,and Le, = 1.963 atu = 0.99 ~ 1. The numbers ScyandSc, are atu = 0 approximately twice as highasatyu
= 1, the ratios areSc{(0) /Sci(1) ~ 1.45and j;(0)/jj (1) »~ 0.7for i = 1,2 (Fig. 1b) butj; (0)/J; (1) ~ 0.5fori = 3, 4.
It is to be noted that the Prandtl number (Fig. 1a) varies only slightly (and almost linearly) across the
boundary layer (thus, Pr =0.783 and Pr = 0.756 at u = 0 and u = 1, respectively). Similar variations in
parametf,rs Pr, j_i, Sci, and Le; (i =1, 2, 3, 4) are noted also in other cases (Figs. 1-2), with the relation
C;=Ciw), 0 = U = 1 for the concentration being almost linear, The absolute values of j; and Cj are very
different when Pr = Sc; = 1 and when Pr =Sc¢j =1, According to Figs, 1-2, Pr = Sc¢; = 1 does not corre-
spond to actual physical conditions. In many cases one may assume, however, that Pr = const across the
boundary layer. As the injection of hydrogen (the B number) through the porous wall is increased, C4(0) and
Jg increase inasmuch as the entire injected hydrogen H, converts into water H,O according to reaction (b),
while C,(0) and j, decrease, but C,(0) and j, change insignificantly inasmuch as nitrogen N, is in this case
an inert substance., The concentrations C,(li) and the normalized currents J:(u) remain invariable as the
injection number B is increased (Figs. 1-2), because the entire oxygen O, (at a given concentration C,.) is
taken up stoichiometrically in reactions (a) and (b). Numbers Pr and Sci (i =1, 2, 3, 4), which are functions
of the thermophysical properties u, ¢p, A, p, and D; determined from the composite system of relations
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Fig. 3. Parameters w and ', enthalpy H, and temperature
T as functions of U, at various surface temperatures Tg and
various values of the injection number B: a, b) P = 0.2, Tg
=1300°K; ¢, d) P = 0.2 and Tg =2000°K; e, f) P =0.2 and Tg
= 2500°K. The solid lines correspond to Pr = 1 and the
dashed lines correspond to Pr =S¢; =1,

TABLE 1, Variation of Parameters w, ', H (kcal/kg), and T
CK) across the Height of a Boundary Layer, at P = 0.4

- Pre8c;#1 Pr=Sc;=I1

bt o0t | ool B o) T olos | aier | H * T
0,00 186 44 685 2500 250 118 705 | 2500
0,10 190 39 657 2431 261 108 2462
0,20 193 22 628 - 2361 271 80 2422
0,30 194 — b 600 2290 276 34 2382
0,40 192 — 43 572 19218 277 — 29 2341
0,56 185 — %4 544 2145 276 T 111 607 | 2298
0,60 172 — 159 516 2069 1254 — 216 2255
0,70 152 — 245 487 1991 226 — 351 2210
0,80 122 — 362 458 1908 182 — 535 2165
0,90 78 — 548 426 1817 116 — 822 . 9118
0,96 39 — 763 405 1755 58 ' —2251 2089
0,99 13 —1029 392 1716 18 -—1568 2075
1,00 4] —c0 390 1702 1} — 2070

(33) and (34) in 1], vary in our cases (Figs. 1-2) as follows as the B number is increased: the Pr number
remains almost unchanged, the S¢j (i =1, 2, 4) numbers decrease, the Sc; humber increases slightly. Con-
sidering that Pr(i) ~ const within 0 <u <1, an increase or decrease in an Sc; number causes the Le; num-
ber (Le; = Pr/Scj) to change in the opposite sense. It is to be noted that in the vicinity of point u =1, which
is singular, the error of numerical integration is maximum and, consequently, the largest deviation of cal-
culated from exact values of parameters is possible here,

A comparison of Fig. 1a, b with Fig. le, f and Fig. 1c, d with Fig. 2c, d shows that, as the surface
temperature Tg rises, the Sc¢;(0) numbers increase while the Scj(1) numbers decrease. The concentrations
C; are almost the same but the normalized currents j; differ appreciably at both surface temperatures as
U — 1. When the porosity is increased from 0.2 (Fig. 2¢, d) to 0.4 (Fig. 2a, b), Scy and Sc, decrease (Leg
and Le, increase correspondingly), All other parameters remain approximately the same.

Variations of w (w = pdu/dn) and w' (w' = dw/du) as well as of enthalpy H (kcal/kg) and temperature
CK) across the boundary layer are shown in Fig. 3. In Table 1 these parameters are listed for P = 0.4, B
=30, and Tg = 2500°K. For the absolute values of B, Tg, and P considered here, a change of B, rather
than of Tg or P, causes the most appreciable change in ¢y and w'. Since w and w' are functions of the 1p
factor in the first of Eqs, (1), hence we have for P = 0.2 (Fig. 3¢) or for P = 0.4 (Table 1) with B = 30:

m,fp='o.2 <O pgg Op_gy > Olpo.4-
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TABLE 2. Variation of the Friction Coefficient ¢f and the Thermal
Flux qg (kecal/ m? - sec) along the Porous Wall (x-Coordinate}, at
Ty =2000°K, u,, =15 m/sec, B = 78.7

x, cm | \ 3 e | e | s ‘i 20 | 30 S
Pr =Sci=1
P=0,2 1533 [ 885 626 | 485 | 396 | 343 | 280 ; 217
cr- 108 P=0,3 1496 864 611 473 | 386 335 273 | 212
P=0,35 1475 852 602 | 466 | 381 330 | 269 209
P='0 2 5131 2962 2095 | 1622 | 1325 | 1147 | 937 | 726
gq- 108 P=0,3 5609 3238 2290 | 1774 | 1449 | 1254 | 1024 | 793
P=0,35 | 5853 3379 2390 | 1851 ; 511 1309 | 1069 | 828
Pr=Sc;=1
105 P=0,2 2489 1437 1016 | 787 | 643 | 557 | 454 | 352
e P=0,3 2426 1400 990 | 767 | 626 | 542 | 443 | 343
108 P=0,2 4318 2493 1763 | 1365 | 1115 | 965 | 788 | 611
s P=0,3 4785 2763 1954 | 1513 | 1236 | 1070 | 847 | 677

Furthermore, if H({0) and T(0) are, respectively, the same at P = 0.2 and at P = 0.4, then
TWpg2>T Moo H Doz ™>H Dlpgp (5)

because, as the porosity of the graphite wall decreases, both the hydrogen current component jg and T()
{or H(1)) increase, inasmuch as the heat of the exothermal reaction (b) is higher than that of reaction (a);
in other words, the given temperatures Tg (Tg = T(0)) is reached at a lower amblent temperature T, (Te
=T(@)) when P = 0.4 than when P =0.2. The increase in w and w ' when Pr =S¢ = Up =1, as compared to
their increase when Pr = Scl =1, is related to the Specxﬁcs of the first equatwn in system (1), where the
largest values of w and w' correspond to the conditions Ip — 1 and Pr =Sc¢; =1 (Fig. 3, Table 1),

As temperature Tq rises (Fig. 4a, b), the local values of the friction coefficient cf and of the thermal
flux qg defined as
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Cf =~

VRe,

20 (0 A(0 ol Vo o
e 1= [ O T o ®

increase, with w(0) = uy/? when Pr =Sc; = 1. Such an increase in ¢f and qg is due to a net change not

only in the thermophysical properties in (6) but also in T'(0) and w(0). The decrease in ¢g and the increase
in qg with increasing u,, (Fig. 4¢, d) is explained in the light of relations (6), where g ~ ud/? and dg

~ uL/z. A higher porosity of the graphite wall (Table 2), too, will reduce c; and raise qg because, as has
been mentioned earlier, a higher P allows the temperature T, necessary for reaching the given tempera-
ture Tg to be lower and thus makes for a higher Reynolds number Rey but a lower w(0) and thus for a lower
cg and a higher q, the latter depending mainly on the temperature difference AT = Tg—~T,, (gg ~ AT).

According to Fig. 4 and Table 2, c¢is higher and qg is lower when Pr =Scj = 1 than when Pr =Sc;
= 1. The inequality

EHlpemsc;=1 = Cf‘Pr%Sci#l

is in the former case explained by an increase i[: w(0) and a decrease in Rey, but in the latter case qg in-
creases because the derivative T'(0) (T' =dT/du) is larger regardless of the decrease in «(0) and the in-
crease in Rey in (6). Thus, in the first case and in the second case the factor inside the square brackets
and T'(0) in (6) are equal to 133-1075, 532 and 119-10-5, 290, respectively (Tg = 2500°K, B =25, P = 0.2,
X =1 mm, U, =15 m/sec). The stream temperature T,, is 2180°K for the first case and 1910°K for the
second case, In this way, according to Figs. 1-4 and Tables 1-2, the assumption Pr = Sc; =1 leads in our
case to large deviations values from exact values.
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